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Abstract 

This paper presents a multi-layered/multi-director and shear-deformable finite ele- 
ment formulation of shells for the analysis of composite laminates. The displacement field 
is assumed continuous across the finite element layers through the composite thickness. The 
rotation field is, however, layer-wise continuous and is assumed discontinuous across these 
layers. This kinematic hypothesis results in independent shear deformation of the director 
associated with each individual layer and thus allows the warping of the composite cross- 
section. The resulting strain field is discontinuous across the different material sets, thereby 
creating the provision that the inter-laminar transverse stresses computed from the constitu- 
tive equations can be continuous. Numerical results are presented to show the performance 

of the method. 
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1. Introduction 

In the last two decades, composites have found increasing application in many engineer- 

ing structures. Recent advances in the technologies of manufacturing and materials have 

enhanced the current application of composite materials from being used as secondary struc- 

tural elements to becoming primary load-carrying structural components. Due to the inherent 

inhomogeneity and anisotropy of the materials, analysis of these composite structures imposes 

new challenges on engineers [10, 11]. 

Plate and shell structures made of laminated composite materials have often been modeled 

as an equivalent single layer using classical laminate theory (C.L.T) [5, 8, 12, 13, 16] in which 

the thickness stress components are ignored.  C.L.T. is a direct extension of classical plate 

theory in which the well known Kirchhoff-Love kinematic hypothesis is assumed enforced. 

This theory is adequate when the thickness (to side or radius ratio) is small. However, lami- 

nated plates and shells made of advanced filamentary composite materials are susceptible to 

thickness effects, because their effective transverse moduli are significantly small compared 

to the effective elastic modulus along the fiber direction. Furthermore, the classical theory of 

plates, which assumes that the normals to the mid-plane before deformation remain straight 

and normal to the plane after deformation, under predicts deflections and over predicts natu- 

ral frequencies and buckling loads. These discrepancies arise due to the neglect of transverse 

shear strains. The range of applicability of the C.L.T. solution has been well established for 

laminated flat plates [10, 12, 20].  In order to overcome the deficiencies in C.L.T., refined 

laminate theories have been proposed [3, 10, 11, 18, 19, 20, 21, 24].  These are single layer 

theories in which the transverse shear stresses are taken into account. They provide improved 

global response estimates for deflections, vibration frequencies and buckling loads of mod- 

erately thick composites when compared to the classical laminate theory.   A Mindlin type 

first-order transverse shear deformation theory (S.D.T.) was first developed by Whitney and 

Pagano [24] for multi-layered anisotropic plates, and by Dong and Tso [6] for multi-layered 
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anisotropic shells. Both approaches (C.L.T. and S.D.T.) consider all layers as one equivalent 

single anisotropic layer, thus they can not model the warping of cross-sections, that is, the 

in-plane distortion of the deformed normal due to transverse shear stresses. Furthermore, 

the assumption of a non-deformable normal results in incompatible shearing stresses between 

adjacent layers. The later approach also requires the introduction of an arbitrary shear cor- 

rection factor which depends on the lamination parameters for obtaining accurate results. 

It is well established that such a theory is adequate to predict only the gross behavior of 

laminates. 

The exact analyses performed by Pagano [12, 13, 16] on the composite fiat plates have 

indicated that the in-plane distortion of the deformed normal depends not only on the lam- 

inate thickness, but also on the orientation and the degree of orthotropy of the individual 

layers. Therefore the hypothesis of non-deformable normals, while acceptable for isotropic 

plates and shells, is often quite unacceptable for multi-layered anisotropic plates and shells 

that have a large ratio of Young's modulus to shear modulus, even if they are relatively 

thin [4, 18, 19, 20]. Thus a transverse shear deformation theory which also accounts for the 

warping of the deformed normal is required for accurate prediction of the elastic behavior 

(deflections, thickness distribution of the in-plane displacements, natural frequencies, etc.) of 

multi-layered anisotropic plates and shells. 

In view of these issues a variationally sound theory that accounts for the 3-D effects, allows 

thickness variation, and permits the warping of the deformed normal, is required for a refined 

analysis of thick and thin composites. In this paper we have endeavored to address these 

issues and develop a new finite element formulation for laminated composites. The assumed 

displacement field is continuous through the thickness, while the rotation field is layer-wise 

continuous (in 2-D) and can be discontinuous across the finite element layers. This dis- 

placement field fulfills a priori the geometric continuity conditions between contiguous layers. 

Furthermore, the assumed displacement field is capable of modeling the in-plane distortion of 
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the deformed normal, without increasing the order of the partial differential equations with 

respect to the first-order transverse shear deformation theory. In this formulation, at most, 

only first derivatives of displacement and rotation fields appear in the variational equations. 

The practical consequence of this fact is that only C° continuity of finite element functions is 

required which is readily satisfied by the Lagrange family of elements [7]. Because of the 3-D 

features in the formulation, it can accurately model the inter-laminar conditions and predict 

the 3-D edge effects. Finally, like the single-layer shear deformable theories, the proposed 

formulation provides flexibility in the specification of the boundary conditions [7]. 

A summary of the paper is as follows. Section 2 presents the assumptions inherent in the 

proposed model. The geometric and kinematic hypothesis of the multi-layered shells that 

accommodate, to an appropriate degree of approximation, the effects of transversal warping 

of the cross-section due to shear deformation as well as fiber compressibility are presented in 

Sections 3 and 4, respectively. Section 5 talks about the development of constitutive matrices 

for composite laminates. The underlying variational framework and the ensuing finite element 

formulation of the problem are presented in Section 6. Section 7 presents some numerical 

examples to demonstrate the range of applicability and accuracy of the proposed theory, and 

conclusions are drawn in Section 8. 

2. Assumptions in the Layer-wise Shear Deformable Shell Theory 

1. The domain ft is of the following special form 

ft = \ (x,y,z) e 7e3|z<° 6 I Y»!](I) 'T = X>(0' ^y)il) G A(° c n2 \     (1) 

where A^ is the area of the reference surface for layer I, t^ is the thickness of layer I and 

T is the total thickness of the composite shell. 

2. The displacement field is assumed to take the following form 

U2\x,y,z) =uW(x,y,z) + ZU9W(x,y)        a «1,2 (2) 
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where u£\x,y,z) are the in-plane translations in layer I, 9l,'(x,y) are the out of plane 

director rotations for the reference surface associated with layer I, and Z^ is a function 

that establishes the position of a point with respect to the reference surface in layer I. 

The second term on the right hand side of (2) can be viewed as an enhancement to the in- 

plane components of the displacement field in layer I with respect to the reference surface 

associated with the layer. Consequently this enhanced field becomes identically zero on 

the reference surfaces. 

3. The displacement field in the thickness direction is assumed to be a function of z, i.e., 

Uil)(x,y,z) =uf{x,y,z)       ' (3) 

thereby producing through the thickness strains which result in thickness variation in the 

shell. A consequence of the above relaxation is that 033 ^ 0 i.e., we do not invoke the 

plane stress hypothesis. 

Remarks: 

1. The continuum requirement on the displacement field at the interface between Ith and 

(I + l)st bounded layers necessitates the satisfaction of the contact conditions; Ua = 

Ua+l) (for a = 1,2), and U^l) = U^l+1). These conditions are inherently satisfied via the 

definition of the assumed displacement field as defined in (2) and (3). 

2. The inter-laminar stress continuity requires the satisfaction of the following conditions at 

the interface of Ith and (l + l)st layers; r^ = r^X) (for a = 1,2), and T$ = T^
+1)

, where 

7-^3 denotes the inter-laminar stresses for layer I. It is important to note that the assumed 

displacement field (2) results in independent non-normal cross-sectional rotations in each 

finite element layer which is in accordance with the Mindlin kinematic assumption. A con- 

sequence is the independent shear deformation of the director in each layer, thus allowing 

the warping of the composite cross-section. Therefore the resulting strain field is discon- 

tinuous across different material sets and creates the provision of stress continuity across 

the interfaces. Consequently, the traction continuity equations are inherently satisfied. 
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3. Kinematic Description of Multi-layered Shells 

Figure 1 shows a composite laminate with 'm' number of material layers. (For ease of 

presentation, in Fig. 1, m = 3). Consequently, the total thickness T is divided into W 

elements through the thickness. Each layer of elements is associated with a reference surface 

which, for ease of discussion, is assumed to be coincident with the lower surface of that 

layer. It is important to note that the director rotation 9a and the slope ü3)Q, (ü3 is the 

displacement field u3 projected onto the reference surface for the layer) are not necessarily 

equal and thus transverse shear strains are accommodated. This is to be contrasted with 

the classical lamination theories in which 8a = ü3,a- Within each layer the director rotates 

by 9%\ generating shear strain 7^]. Consequently, in the deformed configuration, node 2 

(see Fig. 1) moves to location 2'. Now, the director in the second layer rotates by an angle 

0a+l\ generating shear strain y^^ ■ This kinematics is repeated in successive layers and, 

due to the continuity of the displacement field in the thickness direction, we obtain the new 

locations of nodal points (that constitute the layerwise directors) as l', 2', 3' and 4 . This new 

location of points produces a higher-order variation of the in-plane displacement field through 

the thickness. Accordingly, arbitrary polynomial expressions are not required to model the 

higher-order in-plane variation of displacement through the thickness of the composite. 

3.1 Kinematics of an individual layer in the context of the finite element method 

The displacement field of each layer I in the shell is defined by the following relations 

uW (£, rj, 0 = «(l) & V) + U^ (£, 77, C) (4) 

ü(0(^)=£iv-a(£)77)ü(<) (5) 
a=l 
Tien 

U^&riA) =^Na&ri)U<!\Q (6) 
a=l 

Uil) (C) = Z« (C) U®    (no sum) (7) 
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Fig. 1.   Shell kinematics. Variation of transverse shear strains through the thickness. 

4° = ^w>i'r + i(i+cK)+ (8) 

where u%)+ and u^' are the translations of the upper and lower surfaces of layer l, ü^l) is the 

displacement of a point on the reference surface of layer I, U{1) is the 'director displacement' 

for layer I, Na represents two-dimensional shape function associated with node 'a', nen are 

the number of element nodes, and Z^ is the thickness function defined as 

z?)(o = |(i+o^)+-|(i-c)2iI)" (9) 

where zil)+ = \ (l - C) ||Z«|| and Z? = \{l + C) ll^ll- Here Z<*> = x<P+ - x$- 

and tW = HZ^II is the thickness of layer I. The parameter C € [-1.+1] defines the location 

of the reference surface. For example if C = -1.0.+1 (respectively), then the reference surface 

is taken to be the bottom, middle, and top (respectively) of the shell layer I. 

The nodal director displacement vector is constructed so that the director can rotate and 
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stretch as shown by an additive decomposition: 

#<i) = up + Ö-W (10) 

The through thickness stretch component can be expressed as 

öll> = («2+-«2')e2/ w 
where u{£ and «<§" are the translations in the thickness direction of the upper and lower 

surfaces belonging to layer I. The out of plane rotation component of the director is con- 

structed such that it may rotate, viz., 

UP  =^2
)eS/-«e2/ (12) 

The quantities 0$ and 9$ represent the rotations of the director about the basis vectors 

e^lf and e^\f for shell layer I, respectively. 

Remark: We have used the right-hand-rule sign convention for rotations. 

4. Geometric Description of Multi-layered Shells 

Figure 2 shows a typical configuration of a doubly curved composite shell. It can be made 

of numerous plies with variable material properties, ply orientations and thicknesses and can 

be stacked together in any arbitrary sequence. Figure 3 shows a schematic diagram of the 

geometry of a typical laminate of the composite shell (shown by the shaded region in Fig. 2) 

and can be defined by the following relations 

xWtf.ij.C) =*(0(^)+*(0M,C) (13) 

Tten 

s(l)«,»?) = !>.(*. *?) 4° (14) 

a=l 

a=l 

Xil) (C) = ZP (C) X®    (no sum) (16) 
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Fig. 2.   Meso and macro structure of the composite. 

taiit 

=constant 

Fig. 3.   Geometric description of an individual layer. 

where x^ is the position vector of a generic point in layer I, x® is the position vector of 

a point on the reference surface for layer I, X(Z) is the position vector of a generic point 

relative to xw that defines the director through the point for layer I, (in computational shell 

literature, X® is referred to as fiber direction), xil) = Z^/\\Z^\\ is a unit vector emanating 

from node 'a' in the director direction, and Z^} is the thickness function associated with node 

'a' as defined in (9). This function is defined by the location of the reference surface. xa is 

the position vector of nodal point 'a' in layer I and is defined as 

4f) = |(i-c)*F + |(i + c)*if)+ (17) 



A. Masud and M. Panahandeh A finite element formulation for composites 9 

5. Constitutive Relations 

Most composites are made of a repeated sequence of laminates that have the same material 

properties but are oriented at +9 and -6 degrees with respect to the extension direction. Let 

C'W represent the linear constitutive matrix for an individual laminate with regard to its 

mutually perpendicular planes of elastic symmetry. This constitutive matrix for a laminate 

can be projected from its mutually perpendicular planes of elastic symmetry onto the global 

composite coordinate system via a transformation matrix Q^> which is a function of the angle 

8. The transformed constitutive matrix C^ is obtained as 

CT(0 = QW) C'{i) Qd) (18) 

6. The Variational Framework 

We start with the Hu-Washizu variational principle that uses the displacement, strain 

and stress fields as independent variables and thus provides the most general framework to 

formulate the problem and derive its weak form. We denote the strain field by e and its 

variation by a. Similarly, we denote the stress field by cr and its variation by ß. Since no 

boundary conditions are specified on the strain or stress fields, the solution space and the 

space of admissible variations coincide for both strains and stresses. 

5: = {e|£€[L2(n)rdKd+1)/2} 

T: = {<x|<T€[L2(f2)rd(n*d+1)/2} 

where nsd denotes the number of spatial dimentions and for the present case nsd = 3. 

The Hu-Washizu formulation can be obtained by finding the stationary points of the 

functional 

nHw(e, <r,u):=l [ e:C:edü+ [ <r- [Vsu - e] dCl - Uext(u) (19) 
2 Jn Jo, 

where the first term is the stored energy function, while the second term is a Lagrange 

multiplier cr enforcement of the strain-displacement relations.   The assumed displacement 
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field (2)-(3) results in an enhanced strain field because layerwise rotations result in enhancing 

the shear strain components. We write the strain field as e = Vsu + e, where Vsu is the 

symmetric compatible strain and i is the enhanced strain. The corresponding strain variation 

is a = Vsa; + ä, where Vu> is the compatible and ä is the enhanced strain variation. Since 

no boundary conditions are prescribed on the augmented strains as well, both spaces i.e., i 

and ä conincide. 

£:={£|ee[L2(fi)p''(na''+1)/2} 

We can now substitute this enhanced strain field in (19) to obtain an enhanced strain 

version of the Hu-Washizu formulation. 

nHW(e(0), <r, u) := £ / (V3u + i(9)) : C : (Vsu + e{9)) du - [ tr • i<Kl - Uext{u)   (20) 
2 ,/fi Jn 

Following Simo and Hughes [22], we assume a priori, an orthogonality constraint on the stress 

field a with respect to the enhanced strain field e(0). This causes the Lagrange multiplier, 

i.e., cr, to drop out from the formulation, thereby leading to a modified displacement model 

n(n, 9) := i / (Vsu + i(9)) : C : (Vsu + i{9)) du - Uext(u, 9) (21) 
^ Jo, 

The spaces relevant to the modified displacement formulation are 

S = {{u,9) eHl{Cl), (u,9): ü-^TT'd\u = ÜonTu,9 = 9onTe} (22) 

V = {{w,1>) e H^Q), {w,ifi) : ü -H. Tln"} (23) 

where S is the space of trial displacements and trial rotations, and V is the associated space 

of weighting functions, respectively. Hl(ß) denotes the space of square-integrable functions 

along with their generalized derivatives defined over Cl, and HQ(Q.) is the subset of Hl(Cl) 

whose members satisfy zero essential boundary conditions. 

For the case of small strains, assuming the composite laminate to occupy a region Q 

in TU1**, minimization of (21) leads to the following weak form:   Given / : Ü -* 1Zn'd, 
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g . Yg -»• TU1'*-1, h:Th-+ IT'*-1, find {u,9} € S such that for all {w,V} € V 

n(u,0;u>,</>) =   f (Vau + &{9)):C:(Vau + i{0))dn-       u ■ f du - ^       u'hdP 

(24) 

where Vs(-) is the symmetric gradient operator, / denotes the body force vector defined over 

0, h represents the prescribed tractions (normal and shear) over boundary Th, and g are 

the prescribed displacements and rotations defined over boundary Tg. Here Tg = Tu U Te 

with r„ being the boundary with prescribed displacements and Te being the boundary with 

prescribed rotations. 

Now consider a shell consisting of 'm' generally directional but perfectly bonded layers, 

and reference surface of each layer A<z) discretized into 'rwei' finite elements. Let Üe^ = 

^e(0 x [-t/2, t/2](l), fi(0 = Ur=T' ^e(°' and fi = ££i n(°' where ^e(° is the element domain 

in layer I. We can write the principle of virtual work (24) for the layered but perfectly bonded 

anisotropic composite laminates as 

fi(«, 0;«, tf) = £ [J    (Vso, + ä(ö))(Z) : C«> : (V'u + *(*))« dft 

-   /"    WW • fMdSl -Y [   "{l) ■ h{l)dT (25) 

Let 7 = Vn3 - 0 be the shear strain vector, where ü3 is the displacement field projected 

onto the reference surface for layer I. Similarly, let K = Vs9 be the curvature, which is 

also defined layer wise. We can write the energy functional (25) for the layered anisotropic 

laminates as 

n(«,ö;a,^) = El /     (W<> : Cff : W> + 7(I) : C?> : 7(i) + *W : C« : «») dfl 
[=1 v *'n(') 

_ /" ««• fWdti - E/(0 "(/) • fc(l)dr) w 

where 7W and ä<'> are the virtual shear strains and curvatures, respectively. 7(0 = Vü>3   - 

*/;(<), and RO = Vsi/>(0, while cj3 is the virtual displacement field projected onto the reference 
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surface for layer I. The assumed displacement field in (2) and (3) leads to a modified functional 

II, defined as 

n(u,0;u;^) = f[ f    eW : C<? : e^dü + f    ^ : C?> : 7
(Z) dA 

jr( (Jnw JAW 

Tl,d 

+ f   *W : Cil) : K® dA- [    w« • f^dü - Y [   «W • h^dT I     (27) 
7^(0 Jaw fzlJrW J 

where Jn(l) (•) du is a volume integral and JA(l) (•) dA represents an area integral. 

We add the following boundary conditions to the energy functional (27) as 

ua = ua       on   TUa       a = 1,2 (28) 

u3 = u3       on   TU3 (29) 

0a = 9a        on   röa        a = 1,2 (30) 

where Tu = TUa U TU3 represents the boundary where translation boundary conditions are 

applied, and Tga corresponds to the boundary with prescribed rotations, u^uajandoa rep- 

resent the prescribed displacements and rotations, respectively. In addition, we prescribe the 

tractions as 

T  n = T       on   rT (31) 

q • n = q        on   Tq (32) 

m-n = rh       on   Tm (33) 

r and q represent the normal and shear tractions, respectively, while rh represents the pre- 

scribed moments. This leads to a decomposition of Th as Th = rTur,jUrm. rrurg represents 

the boundary where traction boundary conditions are applied, and Tm corresponds to the 

portion of boundary with applied moments. 

The strain vectors for the proposed composite element are 

.(0 
■11 

K{1)     >• n»oo        /   ) 22     ['        '   ~    1      (l)   f   '       "" 1    "-22 '       "" 1  e33 J *■      ' 
723 J I 2*W ^"-12 2e(/) 

ze12 
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where e,7,/c and e represent the in-plane, shear, bending and through-thickness strains, 

respectively. We can combine the in-plane strains with through-thickness strains to yield 

£ = <sS4<>4> 24» T (35) 

The stresses corresponding to the strains are 

"11 

~22 

T33 

r12 

9 = 

m 

m = < m 

m 

(0 
11 

,(0 
22 

(0 
12 

(36) 

where r represents the combined in-plane and the through-thickness stresses, and q and m 

represent the shear and bending stresses, respectively. 

The element stiffness matrices and force vectors emanating from the weak form, that are 

obtained via Galerkin approximation and introduction of element shape functions can be 

written as m 

1=1 

where Aj£*J" is the finite element assembly operator. The element stiffness matrix can ex- 

plicitly be written as 

ke(l) =   f         gfl) . C(l) . £(D     dn+  f    7W : Cf : 7(0 dA + [     *<*> : Cf : «W dA 
in«) 2 ' •/A«>

> -v ' JAW——^ ' 
modified membrane shear bending 

(38) 

where C$ ,C{
s
l) and cj° are the modified-membrane, shear and bending constitutive matrices 

for layer I, respectively. The right hand side force vector can be written as 

F = E{AS- (jf^«(I) • /(I)*> + £4,«(I) • h")dr) } (39) 

where the first term is to the body force vector and the second term is the traction vector. 

Remark: We have used selective reduced integration concepts for the evaluation of the element 

stiffness matrices. 
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7. Numerical Examples 

7.1 Free edge boundary-value problem.   [45,-45]s 

The first numerical simulation is a prismatic symmetric laminate having traction-free 

edges at Y = ±a and surfaces Z = ±h, and is subjected to strain increment only on its ends 

at X = constant. Each layer is composed of uni-directional fiber-reinforced material such that 

the fiber direction is defined by its angle 8 with respect to the X-axis. The elastic properties 

used in this simulation are taken from Pagano [12], p. 4. The laminate consists of four uni- 

directional fibrous composite layers, two with axis of elastic symmetry at +45 and two at —45 

to the longitudinal laminate" axis. (See Fig. 4.) 1% strain in opposite directions is applied at 

X = ±L, while it is restrained to move in the axial, lateral and thickness directions at X = 0. 

The physical dimensions for the numerical simulation are X = 60, Y = 20, Z = 2.5, with 12 

elements in X direction, 40 elements in the Y direction and 4 elements through the thickness. 

For each finite element layer through the thickness, the reference surface is assumed to be 

coincident with the bottom surface of the layer. 

Figure 5 shows the axial displacement distribution at the top free surface of the section 

cut at X = 0, and the results are compared with Moires et dl. and Pagano et al. [12]. 

Figure 6 presents the inter-laminar shear stress at material interface and their corresponding 

values from Reddy [20]. Figure 7 shows the major stress components <7n, cr12, <7i3, and their 

corresponding values from the numerical simulations of Pipes et al. [16]. In order to complete 

the discussion, we have also presented the minor stress components in Fig. 8. 



A. Masud and M. Panahandeh A finite element formulation for composites 15 

4h I 

Figure 4. Laminate geometry and the coordinate system. 
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Figure 5. Axial displacement distribution at the top free surface. 

7.2    Free edge boundary-value problem with a cylindrical hole.   [45,-45]s 

The composite laminate considered in this simulation has the same physical dimensions, 

material properties and loading conditions as in the previous case. However the present 

laminate has a unit diameter cylindrical hole at (0,0,0) with its axis coincident with the 

Z axis (see Fig. 9). The ratio of the diameter of the hole to the width of the laminate is 

0.1. Traction-free boundary conditions are applied on the cylindrical surface of the hole. The 
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Figure 6. Interlaminar shear stress at material interface. 
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Figure 7. Major stress components in the top +45 laminate. 

laminate is constrained to move in the axial, lateral and transverse directions by appropriately 

constraining the nodes along the symmetry lines at X = 0. 

Figure 10 presents the major stress components an, ayz, °~\z at a- section cut at X = 0 

in the top layer with +45 degrees ply orientation. These results have been compared with 

complete 3D anisotropic calculations done with a mesh which is twice as refined as the present 

mesh. In the region away from the free edge boundary and the traction free hole, the ratio of 
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Figure 8. Minor stress components in the top +45 laminate. 

an and cr12 agrees closely with that of the preceding numerical simulation. Figure 11 shows 

the minor stress components which also show a good agreement with the 3D anisotropic 

simulation. 

4hI 

Figure 9. Laminate geometry with a cylindrical hole. 



A. Masud and M. Panahandeh A finite element formulation for composites 18 

400 

350 

300 

,-> 250 

|   200 

3 
t/J 

150 

100 

50 

0 

-50 

■    C\2 

|    0-13 

I ...H„. 3D-Anisotropic 

g n  i- n n—=—s—5—5—a——  — 

-a—a—a—H—S—3-«—a—S—a—H- 

_g...B"-g...a--g— a—a—a— g H 3—a—a.-a-'sgasg'.- 

0.00   0.05   0.10   0.15   0.20   0.25   0.30   0.35   0.40   0.45   0.50 

Normalized width 

Figure 10. Major stress components in the top +45 laminate. 
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Figure 11. Minor stress components in the top +45 laminate. 

8. Conclusions 

In this paper we have presented a finite element formulation which is suitable for the 

analysis of multi-layered/multi-director and shear-deformable composite laminates. The ge- 

ometric description employed for the composite shells finds its roots in the so-called degener- 

ated shell approach. A set of kinematic hypothesis is introduced to accommodate the effects 

of transverse warping of the cross section due to shear deformation along with fiber com- 



A. Masud and M. Panahandeh A finite element formulation for composites 19 

possibility that results from transverse normal stresses. The kinematics are individually and 

independently represented for each layer and are coupled via the conditions of displacement 

continuity between contiguous layers. The rotation field is however layer-wise continuous and 

is assumed discontinuous across the layers. Transversal warping of the composite cross-section 

is described by individual layer directors which simultaneously rotate and stretch. This re- 

sults in discontinuous strain fields across the different material sets, thereby creating the 

provision of stress continuity across the material interfaces. Since the formulation resolves 

all strains, all stresses are computed through the three-dimensional constitutive equations 

and the usual 'zero normal stress' shell hypothesis is not employed. The variational equation 

contains only the first derivatives of displacement and rotation fields that require just the C° 

continuity of finite element functions [7]. In displacement formulation of plates and shells, 

special attention needs to be given to transverse shear and membrane terms to prevent the 

occurrence of mesh locking. We have employed the selective/reduced integration technique to 

avoid this problem. Numerical results are presented that demonstrate the good performance 

of the proposed formulation. 

Acknowledgements 

The authors wish to thank Professors Thomas J.R. Hughes and Robert L. Taylor for 

helpful comments. This research was supported by the Air Force Office of Scientific Research 

under Contract F49620-94-C-0084, project director Dr. Walter F. Jones. 

References 

[1] J. Argyris and L. Tenek, "An efficient and locking-free flat anisotropic plate and shell 
triangular element", Corn-put. Methods in Appl. Mech. Engrg., 118, 63-119, 1994. 

[2] W.S. Burton and A.K. Noor, "Assessment of computational models for sandwich panels 
and shells", Comput. Methods in Appl. Mech. Engrg., 124, 125-151 1995. 

[3] C. Byun and R.K. Kapania, "Prediction of interlaminar stresses in laminated plates using 
global orthogonal interpolation polynomials", AIAA Journal, 30, No 11, November 1992. 



A. Masud and M. Panahandeh 

[4 

A finite element formulation for composites 20 

[5 

[6 

[T 

[«: 

[9 

[io; 

in 

[12 

[13 

[14 

[15 

[ie; 

[it 

[is; 

[19 

Fu-Kuo Chang, J.L. Perez and K.Y. Chang, "Analysis of thick laminated composites", 
Journal of Composite Materials, 24, 801-822, August 1990. 

R.M. Christensen, Mechanics of Composite Materials, John Wiley &; Sons, NY 1979. 

S.B. Dong and F.K.W Tso, "On a laminate orthotropic shell theory including transverse 
shear deformation", Journal of Applied Mechanics, 39, 1972. 

T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element 
Analysis, Prentice-Hall, Englewoods Cliffs, NJ, 1987. 

R.M. Jones, Mechanics of Composite Materials, McGraw-Hill Book Co., New York, 1975. 

S.S. Lekhnitskii, Theory of Elasticity of an Anisotropie Body, Mir Publishers, Moscow, 
1981. 

A.K. Noor and W.S. Burton, "Assessment of shear deformation theories for multi-layered 
composite plates", Applied Mechanics Review, 42, No. 1, 1-13, 1989. 

A.K. Noor and W.S. Burton, "Assessment of computational models for multi-layered 
composite shells", Applied Mechanics Review, 43, No. 4, 67-97 1990. 

N.J. Pagano, Interlaminar response of composite materials, Composite Materials Series, 
Vol. 5., Elsevier, New York, NY, 1989. 

N.J. Pagano and R.B. Pipes, "Some observations on the interlaminar strength of com- 
posite laminates", Int. J. Mech. Sei., 15, 679, 1973. 

P.M. Pinsky and R.V. Jasti, "A mixed finite element for laminated composite plates 
based on the use of bubble functions", Engineering Computations, 6, 316-330, 1989. 

P.M. Pinsky and K.O. Kim, "A multi-director formulation for elastic-viscoelastic layered 
shells", Internat. J. Numer. Methods Engrg., 23, 2213-2244, 1986. 

R.B. Pipes and N.J. Pagano, "Interlaminar stresses in composite laminates under uniform 
axial extension", J. Comp. Materials, 4, 538-548, 1970. 

L. Vu-Quoc and H. Deng, "Galerkin projection for geometrically exact sandwich beams 
allowing for ply drop-off", J. of Appl. Mech., 62, No.2, 479-488, 1995. 

J.N. Reddy, "A simple higher-order theory for laminated composite plates", Journal of 
Applied Mechanics, 51, 745-752, December 1984. 

J.N. Reddy, "A refined non-linear theory of plates with transverse shear deformation", 
Int. J. Solids Struct, 20, 881-896, October 1984. 



A. Masud and M. Panahandeh A finite element formulation for composites 21 

[20] J.N. Reddy, "An evaluation of equivalent-single-layer and layer-wise theories of composite 
laminates", Composite Structures, 25, 21-35, 1993. 

[21] D.H. Robbins, J.N. Reddy and A.V.K. Murty, "On the modeling of delamination in thick 
composites" in Enhanced Analysis Techniques for Composite Materials, ed. L. Schwer, 
J.N. Reddy and A. Mai, The Winter Annual Meeting of the American Society of Me- 
chanical Engineers, Atlanta, Georgia, December 1-6, 1991. 

[22] J.C. Simo and T.J.R. Hughes, "On the variational foundations of assumed strain meth- 
ods", J. of Appl. Mech., 53, 51-54, 1986. 

[23] J.M. Whitney, Structural Analysis of Laminated Anisotropie Plates, Technomic Publish- 
ing Company, Inc. PA, 1987. 

[24] J.M. Whitney and N.J. Pagano, "Shear deformation in heterogeneous anisotropic plates," 
J. App. Mech., 37, 1031, 1970. 


